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Protolytic equilibria often have profound effects on chemical activity, since protolytic species usu-
ally behave quite differently. It is therefore important to characterize the protolytic properties of
important chemicals. Here we present a new approach to study protolytic equilibria of fluorescent
species that is extremely accurate and relies on minimum assumptions. We show that by measuring
2-dimensional excitation/emission scans of samples at different pH, the 3-dimensional experimental
data set,I (λex, λem,C(pH)), can be unambiguously decomposed into the spectral responses of the
protolytic species present as well as their concentration. The approach is demonstrated on the pro-
tolytic equilibrium of fluorescein. Although the fluorescein monoanion cannot be obtained in pure
form, the spectra and concentrations of both fluorescein species, as well as the protolytic constant,
are determined with excellent accuracy. The proposed method is general and can be applied not only
for studies of protolytic equilibria, but on any chemical equilibria and chemical reactions involving
fluorescent species.

KEY WORDS: Trilinear spectroscopy; trilinear fluorescence; chemical equilibrium analysis; multidimensional
data analysis; multidimensional fluorescence.

INTRODUCTION

By most techniques test samples are characterized
by a single scalar measurement, such as its absorption of
light of distinct energy, weight, density, melting temper-
ature etc. Such measurements may be of use for simple
quality control to, for example, find out if a particular sam-
ple behaves differently than expected, but they are not very
useful for thorough characterizations. For such purposes
spectroscopic methods are preferred. In a spectrum con-
tributions from different species may be distinguished,
which makes it possible to say something also about
sample composition. Fluorescence spectra are particu-
larly useful since they are inherently multi-dimensional
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[1]. For example, by recording emission spectra at dif-
ferent excitation wavelength it is possible to distinguish
components that have different absorption spectra (and,
hence, excitation spectra). Still, there is a limit to how
well 2-dimensional spectra can be resolved. If no refer-
ence information is available, it is only possible to calcu-
late ranges for the components’ spectra [2]. This limitation
is due to rotational ambiguity in the mathematical solu-
tion: any linear combination of the components’ excita-
tion spectra and the reciprocal linear combination of their
emission spectra will fit the experimental data. The solu-
tions can be narrowed by requiring non-negative spectral
intensities, but there is still no way to find the truly cor-
rect solution. Furthermore, non-negative conditions may
disqualify correct solution, which may have negative el-
ements due to noise. In 1990 we showed that the rota-
tional ambiguity is resolved if samples are analyzed in
pairs [3]. The reason behind is that only one linear combi-
nation of the components’ excitation and emission spec-
tra will fit both 2-dimensional data sets. The mathematical
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Fig. 1. Graphical illustration of trilinear decomposition.

procedure to find this solution is called Procrustes rotation
[4,5]. Recently Procrustes rotation was generalized to
larger number of samples [6], and found to be mathemat-
ically equivalent to trilinear decomposition and parallel
factor analysis (PARAFAC) [7]. In trilinear decomposi-
tion we have a most powerful method to analyze trilin-
ear fluorescence data. Without making any non-trivial as-
sumptions or using reference information we can, from
the measurement data only, calculate the excitation spec-
tra, the emission spectra, as well as the concentrations of
all species in all samples. This makes trilinear fluores-
cence spectroscopy most powerful to study independent
test samples, and also to characterize chemical equilibria
and chemical and photophysical reactions [5].

Trilinear data sets are sums of components’ re-
sponses, which can be factorized into products of com-
ponents’ specific 1-dimensional contributions:

I (α, β, γ ) ∝
n∑

i=1

Ii (α, β, γ ) =
n∑

i=1

Ii (α)Ii (β)Ii (γ ) (1)

Decomposition of trilinear data is unique and the
components’ specific responses are calculated without any
modeling or making of any non-trivial assumptions. The
principle of trilinear decomposition is illustrated graphi-
cally in Fig. 1.

Fluorescence is inherently a multidimensional
technique and therefore highly suited for trilinear spec-
troscopic measurements. As we show here equilibrium
constants can be determined with extreme accuracy by tri-
linear steady-state fluorescence spectroscopy even when
the titration end-points are not reached.

MATERIALS AND METHODS

Fluorescein was purchased from Sigma and was used
without further purification. Spectral analysis revealed the
dye contained no significant amounts of contaminants. Its
concentration was determined spectroscopically in 0.1 M
NaOH assuming molar absorptivity of 76,900 M−1cm−1

for the fluorescein dianion [8]. A fluorescein stock solu-
tion (0.4µM) was prepared and split into two aliquots
to which equal amounts of 5 mM phosphate buffer of ei-
ther pH 5.37 or 8.30 was added. These two new stock
solutions contained exactly the same amounts of fluores-

cein and of buffer, differing only in pH. The stock so-
lutions were used as test samples with extreme pH. Ad-
ditional test samples were prepared by mixing the stock
solutions in appropriate ratios to obtain samples with rea-
sonably evenly spaced pH values. For each test sample
the pH was measured using two points calibrated pH
meter. In analysis of data, the pH 5.37 sample was left
out, since it contained about 10% of neutral fluorescein,
which upon excitation is converted to negative fluorescein
species [8].

Absorption spectra were measured on a CARY 5
spectrophotometer and fluorescence spectra were mea-
sured on a SPEX model FL1T1 spectrofluorometer at a
resolution of five data points per nanometer. In no case
did the absorption of the fluorescein samples exceed 0.06
making the necessary correction for the inner filter effect
small [9].

Data analysis was performed using DATAN
(www.multid.se) on a regular personal computer.

RESULTS

Figure 2 shows ex/em scans of fluorescein measured
in the emission interval 470–650 nm using 390, 400, 410,
420, 430, 440, 450, and 460 nm excitations at different pH
in the interval 5.66< pH < 8.30. Maximum intensity is
at 510 nm emission at all excitation wavelengths used and
at all pH. With decreasing pH a shoulder appears at the
high wavelength end of the emission spectrum and the in-
tensity measured when using short excitation wavelength
grows with decreasing pH relative to intensity measured at
long excitation. Clearly, more than one fluorescent species
contribute to the spectra and their relative contributions de-
pend on pH and the excitation and emission wavelengths
used.

Using very low total fluorescein concentration
(200 nM) energy transfer between dyes and the inner fil-
ter effect are negligible [9]. Under such conditions the
observed fluorescence equals the sum of the contributions
from the fluorescein protolytic species present weighted
with their concentrations:

I (λex, λem, c(pH))∝
n∑

i=1

Ii (λex, λem, pH)

=
n∑

i=1

Ii (λex, λem)ci (pH) (2)

In general, the emission spectrum of a pure fluores-
cent species is independent of the excitation wavelength
used and, vice versa, the excitation spectrum is inde-
pendent of the wavelength of emission [10]. Hence, the
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Fig. 2. Emission spectra of fluorescein at pH= 5.66, 5.95, 6.51, 6.72,
6.80, 6.88, 7.08, 7.36, 7.82, and 8.30 measured between 470–650 nm
with five data points collected per using 390, 400, 410, 420, 430, 440,
450, and 460 nm excitation.

excitation/emission matrix can be factorized:

I (λex, λem, c(pH))∝
n∑

i=1

Ii (λex, λem, pH)

=
n∑

i=1

Ii (λex)Ii (λem)ci (pH) (3)

From Eq. (3) follows that measurements of excita-
tion/emission scans at different pH make up a trilinear

data set that can be decomposed intoIi (λex), Ii (λem), and
ci (pH), which are the excitation intensities, emission in-
tensities, and concentration dependence on pH for the i:th
protolytic species.

Before proceeding with trilinear decomposition we
must estimate the number of protolytic species,n, that con-
tribute to the spectra in the studied pH interval. This is done
by principal component analysis, PCA [11]. Conventional
PCA is for 2-dimensional data arrays and decomposes a
data matrixA into a product of two orthogonal matrices.

A = TP′ + E =
q∑

i=1

t i p′i + E (4)

T andP’ are referred to as target and projection matrices
and they contain sets ofq orthogonal target and projec-
tion vectors.E is the residual matrix. For noise free data
whenTP’ exactly matchesA andE is zero thenq equals
the number of independent species,n, that are present.
Hence,n can be determined from the number of principal
components required to reproduce the data. However, ex-
perimental data contain noise and there is always a noise
residual. Noise can be accounted for by using statistical
indicators to estimate when the residual matrixE contains
only noise [12,13].

3-Dimensional data can be analyzed by PCA by
slicing the 3-dimensional data set into 2-dimensional ar-
rays that are laminated into a large 2-dimensional matrix
(Fig. 3). Fluorescence data are typically sliced along the
sample dimension and joined along the wavelength dimen-
sion with least data points. Figure 4 shows the result of
PCA for the laminated fluorescein data in Fig. 2. Data are
reconstituted with the two most significant pairs of prin-
cipal components as predicted by the statistical indicators
[12]. This is also in agreement with previous studies of
fluorescein, which show that the fluorescein monoanion
and dianion dominate at pH> 5.5 [8]. The agreement be-
tween measured and reconstructed data was excellent for
all samples as exemplified for the samples with extreme
pH (pH= 5.66 and pH= 8.30) in Fig. 4. The agreement
did not improve significantly by adding a third pair of
principal components, from which we conclude that two
protolytic species contribute to the fluorescence of fluo-
rescein in the range 5.66≤ pH≤ 8.30.

Fig. 3. Slicing and lamination of trilinear data for PCA.
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Fig. 4. PCA of the fluorescein excitation/emission pH titration in Fig. 2. Two pairs of principal
components are used. Measured (purple) and reconstructed (green) spectra are overlaid in the
top left (pH=5.66) and the top right (pH=8.30) figures. The difference between measured and
reconstructed spectra is hardly distinguishable. Bottom graphs show the two most significant
pairs of principal components. The target vectors (left) are orthogonal and correspond to the
sample at pH 5.66. The projection vectors (right) are orthonormal and they are common to all
samples.

Principal components are mathematical constructs.
They are defined as the sets of orthogonal vectors that best
reproduce the experimental data. The orthogonality crite-
rion requires that all principal components but the first pair
have negative features, which makes them very different
from normal spectra. In fact, the principal components are
linear combinations of the excitation and emission spec-
tra of the chemical species present. To determine the lin-
ear combinations we need at least two excitation/emission
data sets [3]. In Fig. 2 we have 10 sets. Assuming presence
of two protolytic species the data were decomposed into
the components’ specific responses by trilinear decompo-
sition using DATAN (www.multid.se.). Measured spectra
and spectra reconstructed from the calculated component
specific responses are compared in the top left graph in
Fig. 5. The agreement is as good as the reproduction from
the principal components (Fig. 4), but this time the base
vectors have physical meaning. The emission spectrum
and excitation intensities determined for the fluorescein
dianion is indistinguishable from those measured in 1 M
NaOH, where the dianion is the only species present [8].
The fluorescein monoanion cannot be obtained in pure
form and direct comparison of calculated and measured
spectra is not possible. But the results are in excellent
agreement with previous determinations of the fluores-

cein monoanion spectra [8]. Plotted on top of each other,
the calculated (Fig. 5) and measured [8] spectra of the
fluorescein monoanion totally overlap (not shown). When
normalized to maximum intensity of 1, the sum of squared
differences:

SSD= 1

m

m∑
i=1

(I (λem)calc− I (λem)meas)
2 (5)

between the spectra was 10−5. The square root, which is
0.003, shall be compared with maximum intensity. Hence,
the error in the determination of spectral profiles in this
particular case is of the order of 3 per mille of signal
maximum. This is of the order of the noise level in the
measured spectra.

Only the shapes, not the magnitudes of the compo-
nents’ specific responses, can be determined by trilin-
ear decomposition due to scaling ambiguity. In Fig. 5
the responses are presented with spectra normalized to
unit area and all weights are collected in the calculated
concentrations. In Fig. 6 the results are renormalized to
show concentrations as molar ratios and the weights are
divided equally between the spectral responses. Inspect-
ing the calculated molar ratios, the two species are found
to have equal concentration at pH= 6.41. Although no
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Fig. 5. Trilinear decomposition of the fluorescein excitation/emission pH titration in Fig. 2.
Top left graph compares measured (purple) and reconstructed (green) spectra at pH= 5.66.
Calculated emission profiles are shown in top right panel, calculated excitation intensities are
shown in bottom right panel, and calculated concentrations are shown in bottom left panel.
Responses of fluorescein monoanion are shown in red and those of the dianion are shown in
blue. All calculated spectral responses are normalized to the same area. Monoanion responses
are shown in red and dianion responses are shown in blue. The lines in the graphs connect
calculated data points and are only to guide the eye.

Fig. 6. The results from trilinear decomposition renormalized to molar ratios. Left graphs
show calculated molar ratios (bottom panel enlarged scale). Right graphs show calculated
emission (top) and excitation (bottom) profiles. Monoanion responses are shown in red and
dianion responses are shown in blue. Lines shown connect calculated data points and are only
to guide the eye.
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assumptions have been made about interactions between
the species in the analysis, this is the protolytic constant of
the fluorescein monoanion and dianion, and agrees with
two decimals precision with previous determinations of
fluorescein pKa at the low ionic strength used [8].

DISCUSSION

With modern spectrophotometers 2-dimensional ex-
citation/emission scans are readily collected. Most instru-
ments can also vary a third parameter such as temperature
or switch between samples using a multi-sample holder
automatically generating 3-dimensional data. More ad-
vanced spectrophotometers can also measure intensity as
function of time, which can be either time after excita-
tion (time-resolved measurements) or time after mixing
(reaction kinetics). Due to the factorial nature of fluores-
cence such data are trilinear, and they can be decomposed
into components’ specific responses without assuming any
thermodynamic models or spectral shapes. Here we used
trilinear steady-state fluorescence to determine the pro-
tolytic constant of fluorescein and the spectral responses
of its protolytic species. Comparing with literature data
both the spectra and protolytic constant were determined
with great precision. This was actually expected due to
the very large amount of data analyzed. Five points were
collected per nanometer of the emission spectra, which
were measured at eight excitation wavelengths in each
of ten samples. This gave a total of 80 emission spec-
tra and 72080 data points. Since all spectra are linear
combinations of the fluorescein anion and dianion spec-
tral responses trilinear decomposition is mathematically
a highly over determined problem, resulting in very high
signal to noise ratios in the calculated spectra similar to
what is obtained by regular averaging of repeated scans.
As a result the calculated spectra have substantially higher
signal to noise levels compared to the measured spectra.
This very efficient averaging also results in highly accu-
rate determination of concentrations and, hence, of the
equilibrium constant.

Trilinear fluorescence has several important advan-
tages compared to traditional fluorescence investigations.
Measurements are rather straight forward to perform using
modern spectrofluorometers, analysis is model indepen-
dent, and calculated results are extremely accurate. The
drawbacks are that 3-dimensional data are hard to dis-
play properly and therefore difficult to inspect visually.
Also, most researchers are still not very experienced in
designing multidimensional experiments, which, although
in essence is not very difficult, takes some practice. But
as more examples become available, scientists will get fa-
miliar with trilinear methods and we expect a great future
in science and technology of all the possible variants of
trilinear fluorescence spectroscopy.
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